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California Institute of TechnologyCalifornia Institute of Technology 

Low DT, Low Heat Flux, “Natural Heat Sources”


� Viability of using environmentally derived heat sources for 
powering thermoelectric generators is being evaluated 

� Generally involve processes with D Ts < 100oC 
� More suited for low power applications (< 100 mW) 

� Types of heat sources that are considered include: 
� Temperature gradients between the soil and ambient air 

� Heat liberated during the decomposition of organic material 
� Temperature gradients in liquid media 

�	 Production of biogas from the decomposition of organic material (will 
be used subsequently in catalytic burner) 

� DT’s as low as 2oC can be considered as potential heat sources 

� Key to selection process: how easily heat source can be 
harnessed and type of heat collection methods used 

�	 Thermal processes will be assessed in terms of the energy content 
available for reaction with the thermoelectric converter. 
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Energy Harvesting Concepts


Natural Thermal Gradients 

Environmental heat source development 
� Use of natural temperature gradients 

� To provide 10-100s of mW output (can be as small as 1oC). 

� One potential system involves the use of aluminum fins and 
heat pipes 

� Air/soil temperature 
difference during 
day, night 

� Calculations show feasibility 
of concept for very low wind 
speed values (0.5 to 0.75 m/s) 

�	 Operating current and voltage 
can be tailored by using parallel 
strings of TE legs 

� Power conditioning 

Micro-TEG 
and energy 
storage device 

Heat transfer 
cooling/heating fins Ground Level 

Heat transfer 
(heat pipe + 
cooling/heating sphere) 
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� Objective: Develop thermoelectric microdevices using integrated-circuit 
type fabrication processes, electrochemical deposition and high thermal 
conductivity substrates

� Technical Approach
� Synthesize 5-50 mmm thick 

films of thermoelectric 
materials using 
electrochemical deposition

� Develop stable 
metallization to diamond,
AlN, Si substrates

� Develop novel techniques 
to fabricate microdevices

Miniaturized Thick-Film TE Converter
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Heat Rejected
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Thousands of Electrodeposited
20-50 mm Thick Thermoelectric
Elements (Bi2Te3 alloys)

Metallization, Electrode
and Diffusion Barrier

Diamond, AlN or Si
substrates (~250 mm
thick)

DC Power

Cu electrode layer

Bi2Te3 -based
Thermoelectric film

diffusion barrier

diffusion barrier

diffusion barrier

Cu electrode layer

Diamond, AlN, Si/SiO2 heat conducting substrate

diffusion barrier

solder bump

Substrate
metallization

Substrate
metallization

contact layer

Diamond, AlN or Si/SiO2  heat conducting substrate

radiator

Heat source

(generator)   

Power chip

(generator)   

Heat sink

� Design and fabrication
of miniature modules

� Enabling technology
� Based on thousands of 

micron-size thermoelectric elements  
� Challenge: device fabrication

� Various designs depending on operating conditions (DD T, Q, Pout)

� Performance, reliability

� Integrate electrochemistry and electronics technology

100 mm

(cooler)Cold side of microdevice   

(cooler)Hot side of microdevice   
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Thermoelectric Microdevices Issues
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� Miniaturized device with a classical TE 
module configuration

� Miniaturization issues
� Electrical contact resistance

� More thermoelectric legs, more electrical connections
� Develop high quality metallization and bonding

schemes

� Thermal resistance
� Due to the ceramic substrates

separating the TE material from
the heat source and heat sink

� Heat transfer is
an important issue

� Increases because the
relative thickness of the
substrates increases
compared to the TE leg
thickness

� Use high thermal conductivity
substrates such as diamond,
AlN, BeO, Si/SiO2

( L e n g t h   

T 3 3 0 K,   3 2 0 K

5 0  5 0 x  =  c r o s s - s e c t i o n  

1 0 i n   r e s i s t a n c e   



fi fl

California Institute of TechnologyCalifornia Institute of Technology 

Electrochemical Deposition


� A promising route to deposition of thick films of TE materials 
� Has been extensively used for CdSe, CdTe and alloys 

� Recent results on PbTe, PbSe 
� High deposition rate on metallic substrates 

� Room temperature process, inexpensive and scaleable 

� Bi2Te3 deposition 
� 13H+ + 18e- + 2BiO+ + 3HTeO2

+ fi Bi2Te3fl + 8H2O 

� JPL using potentiostatic control 
� Manual, computer controlled-equipment 

� Many process parameters 
�	 Deposition voltage, deposition current 

[Bi] concentration, [Bi]/[Te] ratio... 
�	 Deposition setup, stirring rate, 

substrate quality, pH, temperature 

� Deposition of other metallic layers 
� Cu, Ni, Pt, PbSn solder... 1 M 

KNO3 
Pt mesh counter 
electrode 

Working 
electrode 

Calomel 
electrode 

Bridge with 
saturated KNO3 

V A 

1 M HNO3 

+ Bi, Te, Se 
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Deposition of Thermoelectric Legs
California Institute of Technology 

� Using patterned photoresist 
� Team has developed thick photoresist capabilities 

� Up to 75 mm thick (positive PR) 
� Using conventional UV photolithography equipment 

� Experimental results to date 
� Various leg geometries successfully obtained 

� 20 mm tall, 50 mm diameter (cooling) 
� 50 mm tall, 10 mm diameter (power generation) 

� Leg geometry tightly conforms to pattern geometry 
� Legs can be confined to patterned hole 

� Up to 11,000 legs grown using a 30 m m pitch 
� In 3x3 mm2 area 

� Process offers tremendous flexibility for configuring microdevices 
� Using conventional IC-type processing 
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Electrochemically Deposited Bi2Te3 Legs 
Using Thick Photoresist TemplatesCalifornia Institute of Technology 

100 mm 

400mmm 
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TE Microdevice Fabrication


4 mm 

1


100 mm 
100 mm 
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TE Microdevice Fabrication (2)
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Power Conditioning and Charge Control


Requirements 
� Power Conditioning 

� Variable power output from TE converter 
� Under on/off catalytic burner operation 
� If “natural” temperature gradient heat source 

� Voltage regulation required 
� Efficiency issues 

� Volume limitations 
� As compact and lightweight as possible 

� Charge Control 
� Constant potential 

� Parasitic drain from control circuitry 

� Efficiency 
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Power Conditioning and Charge Control


� Approach 
�	 Integrate JPL system components for 100mW and 5W power source 

devices. 

�	 Test integrated 100mW and 5W power sources to remote sensor 
specifications. 

�	 Evaluate charge control design for button cells using 
charge/discharge interrupt devices for efficiency and temperature 
performance. 

�	 Conduct long term float charge characterization of button cell and D-
sized lithium ion cells. 

� Characterize cell performance over temperature range. 

� Accomplishments to date: 
� Surveyed commercial charge control circuits for lithium ion batteries. 

� Evaluated charge control circuits for D-sized lithium ion cells. 

�	 Identified sources for lithium ion cells and charge control circuits for 
100mW and 5W power systems. 
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Status


� Accomplishments to date: 
� Tools for flexible thermal/electrical analysis developed 

� Now focusing on full designs for various device configurations 
� Heat generation, heat transfer and power generation models integrated 

� Technology for TE micodevice fabrication demonstrated 
�	 Leveraged by other JPL programs focusing on basic scientific and technical 

issues related to cooling applications and very low power devices (mW) 
� Now testing feasibility of all fabrication steps 
� First full prototype fabricated 

� Based on a combination of electrochemistry and IC processing techniques 

� Initial study of miniature catalytic burners completed 
� Defined burner design characteristics for integration with micro-TEG 
� Set up test stand for evaluation of performance of catalytic heaters 
� Demonstrated steady-state operation 

� With suitable physical footprint, temperature and heat flux characteristics 

� Preliminary work on power conditioning/charge control completed 
� Rechargeable Li-ion battery sizing 

� Based on state-of-the-art available technology and for various duty cycles 

� Parts for electronics being procured 
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Plans for Remainder of Program


� Heat source 
� Complete catalytic burner development and characterization 

� Evaluate supported platinum catalysts and zirconia and silica wicks/substrates. 
� Examine other liquid fuels such as ethanol and higher hydrocarbons 
� Investigate and test integrated architectures for burner and heat collection 
� Determine 3-dimensional design for optimal air utilization in the catalyst layer. 

� TEMG 
� Procure, test small bulk thermopiles adapted to high heat fluxes 

� 10-20W/cm2 

� Fully operational prototype microdevices to be fabricated and tested by 
end of FY00 

� With complete source integration in FY01 

� Li-ion rechargeable batteries 
� Design study, selection and testing of state-of-the-art technology 
� Evaluation of advanced solid electrolyte Li-ion technology for integration 

� Power conditioning and system integration 
� Design, develop and test power conditioning electronics 
� Test micro-TEGs coupled to selected heat source technologies 
� Integrate and test complete prototype power package 
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TEMGs: Future directions


� High efficiency, long life, ultra compact power sources 
� Integration with System On A Chip program (JPL­

CISM) 
� On-chip power sources (m Ws to mW per mm3 range) 

� ARPS: use of advanced radioisotope heat sources 
�	 500-800 mm small particles nuclear fuel (“Paintable” 

heater) 
� Possibly combined a -voltaics/thermoelectrics 
� Use of energy harvesting schemes (“power skin”) 

� Develop further current IC-ECD techniques for SOAC 
� New materials, structures and device concepts 

On-Chip Power Source 

Bi2Te3 Nanowires 

� Low-dimensional effects on electrons and 
phonons have the potential to significantly 
increase the ZT, conversion efficiency 

� Use of high energy density fuels 
� Potential for very high electrical power 

output densities 
structure 

� Use advanced MEMS-type processing techniques 
� Electrochemical fabrication + 

Combustion 
region 

Interconnect 

Thermal 
isolation 

Thermoelectric 
converter arrays 

-

Exhaust gas recirculation port 
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